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Abstract

We present Grammar-Based Grounded Lexicon Learning (G2L2), a lexicalist
approach toward learning a compositional and grounded meaning representation of
language from grounded data, such as paired images and texts. At the core of G2L2
is a collection of lexicon entries, which map each word to a tuple of a syntactic
type and a neuro-symbolic semantic program. For example, the word shiny has a
syntactic type of adjective; its neuro-symbolic semantic program has the symbolic
form λx.filter(x,SHINY), where the concept SHINY is associated with a neural
network embedding, which will be used to classify shiny objects. Given an input
sentence, G2L2 first looks up the lexicon entries associated with each token. It
then derives the meaning of the sentence as an executable neuro-symbolic program
by composing lexical meanings based on syntax. The recovered meaning programs
can be executed on grounded inputs. To facilitate learning in an exponentially-
growing compositional space, we introduce a joint parsing and expected execution
algorithm, which does local marginalization over derivations to reduce the training
time. We evaluate G2L2 on two domains: visual reasoning and language-driven
navigation. Results show that G2L2 can generalize from small amounts of data to
novel compositions of words.

1 Introduction

Human language learning suggests several desiderata for machines learning from language. Humans
can learn grounded and compositional representations for novel words from few examples. These
representations are grounded on contexts, such as visual perception. We also know how these words
relate with each other in composing the meaning of a sentence. Syntax—the structured, order-sensitive
relations among words in a sentence—is crucial in humans’ learning and compositional abilities for
language. According to lexicalist linguistic theories [30, 36, 9], syntactic knowledge involves a small
number of highly abstract and potentially universal combinatory rules, together with a large amount
of learned information in the lexicon: a rich syntactic type and meaning representation for each word.

Fig. 1 illustrates this idea in a visually grounded language acquisition setup. The language learner
looks at a few examples containing the novel word shiny (Fig. 1a). They also have a built-in, compact
but universal set of combinatory grammar rules (Fig. 1b) that describes how the semantic program of
words can be combined based on their syntactic types. The learner can recover the syntactic type of
the novel word and its semantic meaining. For example, shiny is an adjective and its meaning can be
grounded on visually shiny objects in images (Fig. 1c). This representation supports the interpretation
of novel sentences in a novel visual context (Fig. 1d).

In this paper, we present Grammar-Based Grounded Lexicon Learning (G2L2), a neuro-symbolic
framework for grounded language acquisition. At the core of G2L2 is a collection of grounded
lexicon entries. Each lexicon entry maps a word to (i) a syntactic type, and (ii) a neuro-symbolic
semantic program. For example, the lexicon entry for the English word shiny has a syntactic type of
objset/objset: it will compose with another constituent of type objset on its right, and produces a new
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Q: What’s the color of the
shiny thing?
A: Cyan.

Q: Are there any shiny 
objects?
A: Yes.

c. Learned Grounded Lexicons

SHINY
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shiny set/set

set\set/setright

0.99

0.85

Word Syntax Semantics Concept Embedding

Ex: shiny cube :: filter(filter(CUBE), SHINY)

Ex: cubes right of the green object :: relate(filter(GREEN), filter(CUBE), RIGHT)

a. Training Examples

d. Novel Contexts

count(filter(filter(CUBE), SHINY))

Answer: 3

Forward Application:
X/Y: 𝑓 Y: 𝑎 ⇒ X: 𝑓(𝑎)
Backward Application:
Y: 𝑎 X\Y: 𝑓 ⇒ X: 𝑓(𝑎)
Coordination:
X: 𝑔 CONJ: b X: 𝑓 ⇒ X: 𝜆…b(f…)(g…)
……

How many shiny cubes are there?

Weight

        b. Universal Combinatory Rules (CCG)

𝜆x. lter(x,SHINY) fi

   𝜆x.𝜆y.relate(x, y, RIGHT)

Figure 1: G2L2 learns from grounded language data, for example, by looking at images and reading
parallel question–answer pairs. It learns a collection of grounded lexicon entries comprised of
weights, syntax types, semantics forms, and optionally, grounded embeddings associated with
semantic concepts. These lexicon entries can be used to parse questions into programs.

constituent of syntactic type objset. For example, in Fig. 1d, the word shiny composes with the word
cube and yields a new constituent of type objset. The neuro-symbolic semantic program for shiny
has the form λx.filter(x,SHINY), where SHINY is a concept automatically discovered by G2L2
and associated with a learned vector embedding for classifying shiny objects. G2L2 parses sentences
based on these grounded lexicon entries and a small set of combinatory categorial grammar [CCG;
35] rules. Given an input question, G2L2 will lookup the lexicon entries associated with each token,
and compose these lexical semantic programs based on their syntactic types.

G2L2 takes a lexicalist approach toward grounded language learning and focuses on data efficiency
and compositional generalization to novel contexts. Inspired by lexicalist linguistic theories, but in
contrast to neural network-based end-to-end learning, G2L2 uses a compact symbolic grammar to
constraint how semantic programs of individual words can be composed, and focuses on learning
the lexical representation. This approach brings us strong data efficiency in learning new words, and
strong generalization to new word compositions and sentences with more complex structures.

We are interested in jointly learning these neuro-symbolic grounded lexicon entries and the grounding
of individual concepts from grounded language data, such as by simultaneously looking at images
and reading parallel question–answer pairs. This is particularly challenging because the number of
candidate lexicon entry combinations of a sentence grows exponentially with respect to the sentence
length. For this reason, previous approaches to lexicon learning have either assumed an expert-
annotated set of lexical entries [45] or only attempted to learn at very small scales [15]. We address
this combinatory explosion with a novel joint parsing and expected execution mechanism, namely
CKY-E2, which extends the classic CKY chart parsing algorithm. It performs local marginalization
of distributions over sub-programs to make the search process tractable.

In sum, our paper makes three specific contributions. First, we present the neuro-symbolic G2L2
model that learns grounded lexical representations without requiring annotations for the concepts
to be learned or partial word meanings; it automatically recovers underlying concepts in the target
domain from language and experience with their groundings. Second, we introduce a novel expected
execution mechanism for parsing in model training, to facilitate search in the compositional grammar-
based space of meanings. Third, through systematic evaluation on two benchmarks, visual reasoning
in CLEVR [21] and language-driven navigation in SCAN [25], we show that the lexicalist design
of G2L2 enables learning with strong data efficiency and compositional generalization to novel
linguistic constructions and deeper linguistic structures.

2 Grammar-Based Grounded Lexicon Learning
Our framework, Grammar-Based Grounded Lexicon Learning (G2L2) learns grounded lexicons from
cross-modal data, such as paired images and texts. Throughout this section, we will be using the
visual reasoning task, specifically visual question answering (VQA) as the example, but the idea itself
can be applied to other tasks and domains, such as image captioning and language-driven navigation.
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color of the shiny cube

str/obj - - objset/objset objset
𝜆x.query(x,COLOR) 𝜆x.filter(x,SHINY)

str/obj objset
𝜆x.query(x,COLOR) filter(filter(CUBE),SHINY)

str
query(filter(filter(CUBE),SHINY), COLOR)

I. Lexicon Entry Lookup

II. Chart Parsing

Visual Representation
Obj 1

Obj 22
1

Concept Embeddings
SHINY
CUBE

CUBE

Outputs

Concept SHINY COLOR

Answer: Green(0.85)

Filter Filter Query

III. Neuro-Symbolic Program Execution

Selection: Obj1(0.9)Selection: Obj1(0.9)

filter(CUBE)

Figure 2: G2L2 parses the input sentence into an executable neuro-symbolic program by first (I)
lookup the lexicon entry associated with each word, followed by (II) computes the most probable
parsing tree and the corresponding tree with a chart parsing algorithm. The derived program can be
grounded and executed on an image with a neuro-symbolic reasoning process [28] (III).

G2L2 learns from a collection of VQA data tuples, containing an image, a question, and an answer to
the question. In G2L2, each word type w is associated with one or multiple lexical entries, comprised
of their syntactic types and semantic programs. Given the input question, G2L2 first looks up the
lexicon entries associated with each individual token in the sentence (Fig. 2I). G2L2 then uses a chart
parsing algorithm to to derive the programmatic meaning representation of the entire sentence by
recursively composing meanings based on syntax (Fig. 2II). To answer the question, we execute the
program on the image representation (Fig. 2III). During training, we compare the answer derived from
the model with the groundtruth answer to form the supervision for the entire system. No additional
supervision, such as lexicon entries for certain words or concept labels, is needed.

2.1 Grounded Lexicon

2
1

objset/objset

shiny
Syntax: 

𝜆x.filter(x, SHINY )Semantics:
Example: Concept Emb.

✓

✗

shiny cube
objset/objset objset
𝜆x.filter(x, SHINY) filter(CUBE)

objset
filter(filter(CUBE), SHINY)

Example:

Figure 3: Each word is associated with a
grounded lexicon, comprised of its syntactic
type and a neuro-symbolic semantic program.

At a high-level, G2L2 follows the combinatory cat-
egorical grammar [CCG; 35] formalism to main-
tain lexicon entries and parse sentences. Illustrated
in Fig. 3, Each word w (e.g., shiny) is associated
with one or multiple entries. Each entry e

(i)
w is a

tuple comprised of a syntax type syn(i)w (e.g., ob-
jset/objset), and a semantic meaning form sem(i)

w

(e.g., λx.filter(x,SHINY)). sem(i)
w is a symbolic pro-

gram represented in a typed domain-specific language
(DSL) and can be executed on the input image. Some
programs contain concepts (in this case, SHINY) that
can be visually grounded.

Typed domain specific language. G2L2 uses a DSL
to represent word meanings. For the visual reasoning
domain, we use the CLEVR DSL [21]. It contains
object-level operations such as selecting all objects
having a particular attribute (e.g., the shiny objects)
or select all objects having a specific relationship with
a certain object (e.g., the objects left of the cube). It
also supports functions that respond to user queries,
such as counting the number of objects or query a specific attribute (e.g., shape) of an object. The
language is typed: most functions takes a set of objects or a single object as their inputs, and produce
another set of objects. For example, the operation filter has the signature filter(objset, concept)→
objset and returns all objects that have concept (e.g., all shiny objects) in the input set.

Syntactic types. There are two types of syntactic types in G2L2: primitive and complex.† The
primitive types are defined in the typed domain specific language (e.g., objset, int). A complex type,
denoted as X/Y or X\Y, is a functor type that takes an argument of type Y and returns an object of
type X. The direction of the slash indicates word order: for X/Y, the argument Y must appear on the
right, whereas in X\Y, it must appear on the left. Note that X and Y can themselves be complex types,

†In some domains we also use conjunctions (CONJ) in the coordination rule.
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which allows us to define functor types with multiple arguments, such as (X\Y)/Z, or even functors
with functor arguments (e.g., (X\Y)/(Z/Z)).

In G2L2, the semantic type of a word meaning (in the DSL) together with a set of directional and
ordering settings for its arguments (reflecting how the word and its arguments should be linearized in
text) uniquely determines the word’s syntactic type. For example, the syntactic type for word shiny
is objset/objset. It first states that shiny acts as a function in meaning composition, which takes a
subprogram that outputs a set of objects (e.g., filter(CUBE)) as its argument, and produces anew
program whose output is also a set of objects, in this case, filter(filter(CUBE),SHINY) Second, it
states the direction of the argument, which should come from its right.

Neuro-symbolic programs. Some functions in the DSL involves concepts that will be grounded in
other modalities, such as the visual appearance of an object and their spatial relationships. Taking the
function filter as an example, its secondary argument concept should be associated with the visual
representation of objects. In G2L2, the meaning of each lexicon entry may involve one more constants
(called “concepts”) that are grounded on other modalities, possibly via deep neural embeddings. In
the case of shiny: λx.filter(x,SHINY). The concept SHINY is associated with a vector embedding
in a joint visual-semantic embedding space, following Kiros et al. [24]. During program execution,
we will be comparing the embedding of concept SHINY with object embeddings extracted from the
input image, to filter out all shiny objects.

Lexicon learning. G2L2 learns lexicon entries in the following three steps. (i) First, we enumerate
all possible semantic meaning programs derived from the DSL. For example, in the visual reasoning
domain, a candidate program is λx.filter(x, ?), where ? denotes a concept argument. When we try
to associate this lexicon entry to the word shiny, the program is instantiated as λx.filter(x,SHINY),
where SHINY is a new concept associated with a vector embedding. Typically, we set a maximum
number of arguments for each program and constrain its depth. We explain how we set these
hyperparameters for different domains in the supplementary material. (ii) Next, for programs that
have a primitive type, we use its semantic type as the syntactic type (e.g., objset). For programs
that are functions with arguments, we enumerate possible argument ordering of the arguments. For
example, the program λx.filter(x,SHINY) has two candidate syntactic types: objset/objset (the
argument is on its right in language) and objset\objset (the argument is on its left). (iii) Finally, we
associate each candidate lexicon entry with a learnable scalar weight τ(·). It is typical for a single
word having tens or hundreds of candidate entries, and we optimize these lexicon entry weights in
the training process. In practice, we assume no lexical ambiguity, i.e., each word type has only one
lexical entry. Thus, the ambiguity of parsing only comes from different syntactic derivation orders
for the same lexical entries. This also allows us to prune lexicon entries that do not lead to successful
derivations during training.

2.2 Program Execution
Any fully grounded programs (i.e., programs without unbound arguments) can be executed based on
the image representation. We implement the Neuro-Symbolic Concept Learner [NS-CL; 28] as our
differentiable program executor, which consists of a collection of deterministic functional modules
to realize the operations in the DSL. NS-CL represents execution results in a “soft” manner: in the
visual reasoning domain, a set of objects is represented as a vector mask m of length N , where N
is the number of objects in the scene. Each element, mi can be interpreted as the probability that
object i is in the set. For example, the operation λx.filter(x,SHINY) receives an input mask m
and produces a mask m′ that selects all shiny objects in the input set. The computation has two
steps: (i) compare the vector embedding of concept SHINY with all objects in the scene to obtain a
mask m(SHINY), denoting the probability of each object being shiny; (ii) compute the element-wise
multiplication m′ = m � mSHINY, which can be further used as the input to other functions. In
NS-CL, the execution result of any program is fully differentiable w.r.t. the input image representation
and concept embeddings (e.g., SHINY).

2.3 Joint Chart Parsing and Expected Execution (CKY-E2)
G2L2 extends a standard dynamic programming algorithm for chart parsing (i.e., the CKY algo-
rithm [22, 44, 10]) to compose sentence meaning from lexical meaning forms, based on syntax.
Denote wi as the input word sequence. eji the j-th lexicon entry associated with word wi, and
τ(eji ) the corresponding weight. Consider all possible derivation of the question {derivationk},
k = 1, 2, . . . . We define the following context-free probability distribution of derivations as:
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Algorithm 1 The CKY-E2 algorithm.

Input: wi: the input sentence; L: sentence length; eji : the j-th lexicon
entry associated with word wi; τ(eji ): lexicon weights.

Output: exek the execution result of the all possible derivations and
their weights τ(exek).

1: for i ← 0 to L− 1 do
2: Initialize dp[i , i + 1 ] with lexicon entries e∗i and weights τ(e∗i )
3: end for
4: for length ← 1 to L do
5: for left ← 0 to L− length do
6: right ← left + length
7: dp[left , right ]← empty list
8: for k ← left + 1 to right − 1 do
9: Try to combine nodes in dp[left , k ] and dp[k , right ]

10: Append successful combination to dp[left , right ]
11: end for
12: EXPECTEDEXECUTION(dp[left , right ])
13: end for
14: end for
15: procedure EXPECTEDEXECUTION(a: a list of derivations)
16: while ∃x, y ∈ a are identical except for subtrees of the same

type do
17: Create z from x and y by computing the expected execution

results for non-identical subtrees
18: τ(z)← τ(x) + τ(y)
19: Replace x and y in a with z
20: end while
21: end procedure

Span: right of the green object
Candidate 1:
𝜆x.relate(x, filter(GREEN), RIGHT)

Candidate 2:
𝜆x.relate(x, relate(filter(THE),
filter(OBJECT), GREEN), RIGHT)

Relate

arg? Filter

GREEN

RIGHT

Relate

arg? Relate RIGHT

Filter Filter GREEN

OBJECTTHE

Figure 4: An illustrative exam-
ple of two semantic programs
that can be merged by comput-
ing the expected execution results
of two subtrees (highlighted in
gray). Both subtrees outputs a
vector of scores indicating the ob-
jects being selected.

p(derivationk) ∝ exp

( ∑
e∈derivationk

τ(e)

)
.

That is, the probability is exponentially proportional to the total weights τ(e) of all lexicon entries
e ∈ derivationk used by the specific derivation.

A straightforward implementation to support joint learning of lexicon weights τ and neural modules
(e.g., filter(x,SHINY)), is to simply execute all possible derivations on the input image, and compare
the answer with the groundtruth. However, the number of possible derivations grows exponentially
as the question length, making such computation intractable. For example, in SCAN [25], each
word has 178 candidate lexicons, and the number of lexicon combination of a sentence with 5 words
will be 1785 ≈ 1011. To address this issue, we introduce the idea of expected execution, which
essentially computes the “expected” execution result of all possible derivations. We further accelerate
this process by taking local marginalization.

Our CKY-E2 algorithm is illustrated in Algorithm. 1. It processes all spans [left, right) sequentially
ordered by their length. The composition for derivations of [left, right) has two stages. First, it
enumerates possible split point k and tries to combine the derivation of [left, k) and [k, right). This
step is identical to the standard CKY parsing algorithm. Next, if there are two derivations x and y of
span [i, j), whose program structures are identical except for subtrees that can be partially evaluated
(i.e., does not contain any unbounded arguments), we will compress these two derivations into one,
by marginalizing the execution result for that subtree.

See the example from Fig. 4. Two programs have the identical structure, except for the second
argument to the outer-most relate operation. However, these sub-trees, highlighted in gray, can be
partially evaluated on the input image, and both of them output a vector of scores indicating the
objects being selected. Denote τ1 and τ2 as the weight associated with two derivations, and v1 and v2
the partial evaluation results (vectors) for two subtrees. We will replace these two candidate meaning
form with z:

z := λx.relate(x, v′,RIGHT), where v′ :=
τ1v1 + τ2v2
τ1 + τ2

, τ(z) := τ1 + τ2.
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We provide additional running examples of the algorithm in the supplementary material.

Complexity. Intuitively, once we have determined the semantics of a constituents in the question,
the actual concrete meaning form of the derivation does not matter for future program execution,
if the meaning form can already be partially evaluated on the input image. This joint parsing and
expected execution procedure significantly reduces the exponential space of possible parsing to a
polynomial space w.r.t. the number of possible program layouts that can not be partially evaluated,
which, in practice, is small. The complexity of CKY-E2 is polynomial with respect to the length L of
the sentence, and M the number of candidate lexicon entries. More specifically, O(L3M), where
O(L3) comes from the chart parsing algorithm, and the number of derivations after the expected
execution procedure is O(M). This result is obtained by viewing the maximum arity for functor
types being a constant (e.g., 2). Intuitively, for each span, all possible derivations associated with
this span can be grouped into 4 categories: derivations of a primitive type, derivations of a 1-ary
functor type, derivations of a 2-ary functor type, and derivations of a 2-ary functor type, with one
argument binded. All these numbers grow linearly w.r.t. M . For detailed analysis please refer to our
supplementary material.

Correctness. One can theoretically prove that, if all operations in the program layout are commutative
with the expectation operator, i.e., if E ([f (x)] = f (E [x]), our CKY-E2 produces exact computation
of the expected execution result. These operations include, tensor addition, multiplication (if tensors
are independent), and concatenation, which cover most of the computation we will do in neuro-
symbolic program execution. For example, for filter, taking the expectation over different inputs
before doing the filtering is the same as taking the expectation over the filter results of different inputs.
However, there are operations such as quantifiers whose semantics are not commutative with the
expectation operator. In practice, it is possible to still use the expected expectation framework to
approximate. We leave the application of other approximated inference techniques as future work.
We provide proofs and its connections with other formalisms in the supplementary material.

2.4 Learning
Our model, G2L2, can be trained in an end-to-end manner, by looking at images and reading paired
questions and answers. We denote ` as a loss function that compares the output of a program execution
(e.g., a probability distribution over possible answers) and the groundtruth. More precisely, given all
possible derivations derivationk, the image representation I , the answer A, and the executor E(·, I),
we optimize all parameters by minimizing the loss L:

L =
∑
k

(p(derivationk) · ` (E(derivationk, I), A)) .

In practice, we use gradient-based optimization for both the neural network weights in concept
grounding modules and the lexicon weights τ .

3 Experiment
We evaluate G2L2 on two domains: visual reasoning in CLEVR [21] and language-driven navigation
in SCAN [25]. Beyond the grounding accuracy, we also evaluate the compositional generalizability
and data efficiency, comparing G2L2 with end-to-end neural models and modular neural networks.

3.1 Visual Reasoning
We first evaluate G2L2 on the visual reasoning tasks in the CLEVR domain [21], where the task is to
reason and answer questions about images. In our study, we use a subset of CLEVR dataset, which
does not include sentences that involve coreference resolution, and words with multiple meanings in
different contexts. We add additional information on how we filter the dataset in the supplementary.

Setup. Instead of using manually defined heuristics for curriculum learning or self-paced learning as
in previous works [28, 26], we employ a curriculum learning setup that is simply based on sentence
length: we gradually add longer sentences into the training set. This helps the model to learn basic
words from very short sentences (6 words), and use the acquired lexicon to facilitate learning longer
sentences (20 words). Since CLEVR does not provide test set annotations, for all models, we held
out 10% of the training data for model development and test them on the CLEVR validation split.

Baselines. We compare G2L2 with 4 baselines. (1) MAC [19] is an end-to-end approach based on
attention. (2) TbD-Net [29] uses a pre-trained semantic parser to parse the question into a symbolic
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Model Prog? Concept?
Standard Compositional Generalization Depth

10% 100% purple right of count

MAC [19] N/N N/N 85.39 98.61 97.14 90.85 54.87 77.40

TbD-Net [29] Y/Y N/N 44.52 98.04 89.57 49.92 63.37 53.13
NS-VQA [43] Y/Y Y/Y 98.57 98.57 95.52 99.80 81.81 50.45
NS-CL [28] Y/N Y/N 98.51 98.91 98.02 99.01 18.88 81.60

G2L2 (ours) Y/N Y/N 98.11 98.25 97.82 98.59 96.76 98.49

Table 1: Accuracy on the CLEVR dataset. Our model achieves a comparable results with state-of-
the-art approaches on the standard training-testing split. It significantly outperforms all baselines on
generalization to novel word compositions and to sentences with deeper structures. The best number
in each column is bolded. The second column indicates whether the model uses program-based
representation of question meaning and whether it needs program annotation for training questions.
The third column indicates whether the model explicitly models individual concepts and whether it
needs concept annotation for objects during training.

program, and executes the program with a neural module network [5]. (3) Similarly, NS-VQA [43]
also parses the question into a symbolic program. It also extracts an abstract scene representation
with pre-trained neural recognition models [17]. It executes the program based on the abstract scene
representation. Both of the approaches require additional supervision for training the semantic parser,
and NS-VQA requires additional annotation for training the visual recognition model. (4) NS-CL [28]
jointly learns a neural semantic parser and concept embeddings by looking at images and reading
paired questions and answers. It requires the annotation for all concepts in the domain (e.g., colors
and shapes). In contrast, G2L2 can automatically discover visual concepts from texts.

Results. Table 1 summarizes the results. We consider any model that performs in the 95–100 range
to have more or less solved the task. Small differences in numeric scores in this range, such as the fact
that NS-CL outperforms our model on the “purple” generalization task by 0.2%, are less important
than the fact that our model far outperforms all competitors on “count” compositional generalization
and the “depth” generalization task, both of which all competitor models are far from solving.

We first compare different models on the standard training-testing split. We train different models
with either 10% or 100% of the training data and evaluate them on the validation set. Our model
achieves a comparable performance in terms of its accuracy and data efficiency.

Next, we systematically build three compositional generalization test splits: purple, right of, and
count. The detailed setups and examples for these splits are provided in the supplementary. Essentially,
we remove 90% of the sentences containing the word purple, the phrase right, and counting
operations, such as how many ...? and what number of ...?. We only keep sentences up to a certain
length (6 for purple, 11 for right, and 8 for count). We make sure that each use case of these words
appear in training questions. After training, we test these models on the validation set with questions
containing these words. Overall, our model G2L2 outperforms all baselines on all three generalization
splits. In particular, it significantly outperforms other methods on the count split. The count split is
hard for other method because it requires model to generalize to sentences with deeper structures, for
example, from “how many red objects are there?” to “how many red objects are right of the cube?”
Note that, during training, all models have seen example use of similar structures such as “what’s the
shape of the red object” and “what’s the shape of the red object right of the cube?”

Finally, we test generalization to sentences with deeper structures (depth). Specifically, we define
the “hop number” of a question as the number of intermediate objects being referred to in order to
locate the target object. For example, the “hop number” of the question “how many red objects are
right of the cube?” is 1. We train different models on 0-hop and 1-hop questions and test them on
2-hop questions. Our model strongly outperforms all baselines.

The results on the compositional generalization and depth splits yield two conclusions. First,
disentangling grounded concept learning (associating words onto visual appearances) and reasoning
(e.g., filtering or counting subsets of objects in a given scene) improves data efficiency and generaliza-
tion. On CLEVR, neuro-symbolic approaches that separately identify concepts and perform explicit
reasoning (NS-VQA, NS-CL and G2L2) consistently generalize better than approaches that do not
(MAC, TbD). The comparison between TbD and NS-VQA is informative: TbD fails on the “right
of” task even in the case where the semantic parser is providing correct programs, while NS-VQA,
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Model
Simple Compositional Generalization Length

10% 100% jump around right

seq2seq [37] 0.93±0.05 0.99±0.01 0.00±0.00† 0.00±0.00† 0.15±0.02
Transformer [41] 0.71±0.24 0.78±0.11 0.00±0.00 0.10±0.08 0.02±0.01
GECA [3] 0.99±0.00 0.98±0.01 0.87±0.05† 0.82±0.11† 0.15±0.02
WordDrop [16]∗ 0.56±0.02 0.62±0.02 0.52±0.02 0.70±0.06 0.18±0.01
SwitchOut [42]∗ 0.99±0.01 0.99±0.01 0.98±0.02 0.97±0.02 0.17±0.02
SeqMix [16]∗ – – 0.98‡ 0.89‡ –
recomb-2 [2] – – 0.88±0.07† 0.82±0.08† –
G2L2 (ours) 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Table 2: Accuracy on the SCAN dataset, averaged across 10 valid runs when applicable, ± denotes
standard deviation. The best number in each column is bolded. †: results taken from [2]; ‡: results
taken from [16]. Both paper have only presented results on the compositional generalization split. ∗:
applied after GECA. The results for GECA are based on the released implementation by the authors.
All the models are selected with respect to the accuracy on the training set.

which uses the same parser but explicitly represents compositional symbolic concepts for reason-
ing, succeeds in this task. Crucially, of the three neuro-symbolic methods, G2L2 achieves strong
performance with less domain-specific knowledge than other methods: NS-VQA needs groundtruth
programs; NS-CL needs the concept vocabulary; G2L2 requires neither. Second, our model is the
only one to perform well on the hardest “out-of-sample” generalization tests: holding out “count”
and generalizing to deeper embeddings. The other, easier generalization tests all have close neighbors
in the training set, differing by just one word. In contrast, the length, depth and “count” tests require
generalizing to sentences that differ in multiple words from any training example. They appear to
require – or at least benefit especially well from – G2L2 ’s lexical-grammatical approach to capturing
meaning of complex utterances, with explicit constituent-level (as opposed to simply word-level)
composition. We also provide in-depth analysis for the behavior of different semantic parsing models
in the supplementary material.

3.2 Language-driven Navigation
The second domain we consider is language-driven navigation. We evaluate models on the SCAN
dataset [25]: a collection of sentence and navigational action sequence pairs. There are 6 primitive
actions: jump, look, walk, run, lturn, and rturn, where an instruction turn left twice and run will be
translated to lturn lturn run. All instructions are generated from a finite context-free grammar, so that
we can systematically construct train-test splits for different types of compositional generalizations.

Setup. We use a string-editing domain-specific language (DSL) for modeling the meaning of words
in the SCAN dataset, of which the details can be found in the supplementary material. At a high
level, the model supports three primitive operations: constructing a new constant string (consisting of
primitive operations), concatenating two strings, and repeating the input string for a number of times.

For G2L2, we generate candidate lexicons by enumerating functions in the string-editing DSL with
up to 2 arguments and the function body has a maximum depth of 3. We also allow at most one of the
argument being functor-typed, for example, V\V/(V\V). To handle parsing ambiguities, we use two
primitive syntax types S and V , while both of them are associated with the semantic type of string.
In total, we have 178 candidate lexicon entries for each word.

Baselines. We compare G2L2 to seven baselines. (1) Seq2seq [37] trains an LSTM-based encoder-
decoder model. We follow the hyperparameter setups of [25]. (2) Transformer [41] is a 4-head
Transformer-based autoregressive seq2seq model. We tuned the hidden size (i.e., the dimension of
intermediate token representations) within {100, 200, 400}, as well as the number of layers (for both
the encoder and the decoder) from {2, 4, 8}. Other methods are based on different data augmentation
schemes for training a LSTM seq2seq model. Specifically, (3) GECA augments the original training
splits using heuristic span recombination rules; (4) WordDrop [16] performs random dropout for
input sequence (while keeping the same label); (5) similarly, SwitchOut [42] randomly replaces
an input token with a random token from the vocabulary; (6) SeqMix [16] uses soft augmentation
techniques following [46], which composes an “weighted average” of different input sequences; (7)
recomb-2 [2] learns recombination and resampling rules for augmentation.

Results. We compare different models on three train-test splits. In Simple, the training and test
instructions are drawn from the same distribution. We compare the data efficiency of various models
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by using either 10% or 100% of the training data, and test them on the same test split. While all
models can achieve a nearly-perfect accuracy with 100% training data, our model G2L2 shows
advantage with only a small amount of data. Next, in Compositional, we have held out the sentences
containing certain phrases, such as jump and around right. For these held-out phrases, only valid
non-contextual examples containing them (i.e., jump in isolation and no example for around right)
are available during training. During test, algorithms need to make systematical generalization of
these phrases in novel contexts. Finally, in Length, all training examples have the action length less
than or equal to 22, while that of a test example is up to 48. Our model consistently reach perfect
performance in all considered settings, even on the cross-length generalization task where GECA
does not help improve performance. These results are consistent with the conclusions we derived
on the CLEVR dataset. Specifically, data-augmentation techniques for SCAN can solve simple
generalization tests (e.g., jump, where tests all have close neighbors in the training set, differing by
just one word) but not the hard ones (e.g., length, where test sentences can different in multiple words
from any training examples).

Cases study. G2L2 is expressive enough to achieve perfect accuracy on the SCAN dataset: there
exists a set of lexicon entries which matches the groundtruth in SCAN. However, our learning
algorithm does not always converge on the correct lexicon, but when it fails, the failure can be
identified based on training-set accuracy. So, we perform model selection based on the training
accuracy for G2L2: after a sufficient number of epochs, if the model hasn’t reached perfect accuracy
(100%), we re-initialize the weights and train the model again. Our results show that, among 100
times of training, the model reaches 100% accuracy 74% of the time. For runs that don’t have 100%
accuracy, the average performance is 0.94.

Since G2L2 directly learns human-interpretable lexicon entries associated with each individual words,
we can further inspect the failure cases made by it when the training accuracy does not converge to 0.
We find that the most significant failure mode is the word and (e.g., jump and run) and after (e.g.,
jump after run). Both of them are treated as connectives in SCAN. Sometimes G2L2 fails to pick
the syntax type S\V/V over the type V\V/V. The entry V\V/V will succeed in parsing most cases (e.g.,
jump and run), except that it will introduce ambiguous parsing for sentences such as “jump and run
twice”: jump and run twice vs. jump and run twice. Based on the definition of the SCAN, only the
first derivation is valid. In contrast, using S\V/V resolves this ambiguity. Depending on the weight
initialization and the example presentation order, G2L2 sometimes get stuck at the local optima of
V\V/V. However, we can easily identify this by the training accuracies—G2L2 is able to reach perfect
performance on all considered splits by simply retraining with another random seed, therefore, we
only select those with 100% training accuracy as valid models.

4 Related Work

Lexicalist theories. The lexicalist theories of syntax [30, 36, 9] propose that 1) the key syntactic
principles by which words and phrases combine are extremely simple and general, and 2) nearly
all of the complexity in syntax can be attributed to rich and detailed lexical entries for the words
in the language. For example, whereas the relationship between the active and passive voice, e.g.,
“Kim saw a balloon” versus “A balloon was seen by Kim”, was treated in pre-lexicalist theories as a
special syntactic rule converting between the sentences, in lexicalist theories this relationship derives
simply from the knowledge that the passive participle for the verb “see” is “seen,” which interacts
with knowledge of other words to make both the active and passive forms of the sentence possible.
In lexicalist theories, the problem for the language learner thus becomes a problem of learning the
words in the language, not a problem of learning numerous abstract rule schemas. The combinatory
categorial grammar [CCG; 35] framework we use is a well-established example of a lexicalist theory:
there is a universal inventory of just three combinatory rules (Fig. 1a), but those rules can only be
applied once richly specified lexical entries are learned for the words in a sentence. We believe that
this lexicalist-theory approach is a particularly good fit to the problem of grounded language learning:
the visual context provides clues to the word’s meaning, and the word’s grammatical behavior is tied
closely to this meaning, making learning efficient.

Compositional generalization in NLP. Improving the compositional generalization of natrual lan-
gauge processing (NLP) systems have drawn great attention in recent years [8]. Most of the re-
cent approaches towards this goal are mostly built on deep learning-based models. There are two
representative approaches: building recursive neural networks with explicit phrase-based struc-
tures [34, 48, 38]; and using data augmentation techniques [3, 16, 2]. However, these approaches
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either rely on additional annotation or pretrained models for phrase structure inference or require
domain-specific heuristics in data augmentation. In contrast to both approaches, we propose to use
combinatory grammar rules to constrain the learning of word meanings and how they compose.

Neural latent trees. CKY-E2 is in spirit related to recent work using CKY-style modules for inducing
latent trees. However, our model is fundamentally different from works on unsupervised constituency
parsing [23, 33] which use the CKY algorithm for inference over scalar span scores and those compute
span representation vectors with CKY-style algorithms [27, 11, inter alia]. Our key contribution
is to introduce the expected execution mechanism, where each span is associated with weighted,
compressed programs. Beyond enumerating all possible parsing trees as in [27], G2L2 considers all
possible programs associated with each span. Our expected execution procedure works for different
types (object set, integer, etc.) and even functor types. This makes our approximation exact for linear
cases and has polynomial complexity.

Grammar-based grounded language learning. There have also been approaches for learning
grammatical structures from grounded texts [32, 47, 20, 7, 31, 40]. However, these approaches
either rely on pre-defined lexicon entries [7], or only focus on inducing syntactic structures such
as phrase-structure grammar [32]. Different from them, G2L2 jointly learns the syntactic types,
semantic programs, and concept grounding, only based on a small set of combinatory grammar rules.

Grammar-based and grounded language learning have also been studied in linguistics, with related
work to ours studying on how humans use grammar as constraints in learning meaning [36] and how
learning syntactic rules and semantic meanings in language bootstrap each other[1, 39]. However,
most previous computational models have focused only on explaining small-scale lab experiments and
do not address grounding in visual perception [13, 15]. In contrast, G2L2 is a neuro-symbolic model
that integrates the combinatory categorial grammar formalism [35] with joint perceptual learning and
concept learning, to directly learn meanings from images and texts.

Neuro-symbolic models for language grounding. Integrating symbolic structures such as programs
and neural networks has shown success in modeling compositional queries in various domains,
including image and video reasoning [18, 29], knowledge base query [4], and robotic planning [6].
In this paper, we use symbolic domain-specific languages with neural network embeddings for
visual reasoning in images and navigation sequence generation, following NS-CL [28]. However, in
contrasts to using neural network-based semantic parser as in the aforementioned papers, our model
G2L2 focuses on learning grammar-based lexicon for compositional generalization in linguistic
structures, such as novel word composition.

5 Conclusion and Discussion
In this paper, we have presented G2L2, a lexicalist approach towards learning compositional and
grounded meaning of words. G2L2 builts in a compact but potentially universal set of combinatory
grammar rules and learns grounded lexicon entries from a collection of sentences and their grounded
meaning, without any human annotated lexicon entries. The lexicon entries represent the semantic
type of the word, the ordering settings for its arguments, as well as the grounding of concepts in
its semantic program. To facilitate lexicon entry induction in an exponentially-growing space, we
introduced CKY-E2 for joint chart parsing and expected execution.

Through systematical evaluation on both visual reasoning and language-driven navigation domains,
we demonstrate the data efficiency and compositional generalization capability G2L2, and its general
applicability in different domains. The design of G2L2 suggests several research directions. First, in
G2L2 we have made strong assumptions on the context-independence of the lexicon entry as well
as the application of grammar rules, the handling of linguistic ambiguities and pragmatics needs
further exploration [14]. Second, meta-learning models that can leverage learned words to bootstrap
the learning of novel words, such as syntactic bootstrapping [15], is a meaningful direction. Finally,
future work may consider integrating G2L2 with program-synthesis algorithms [12] for learning of
more generic and complex semantic programs.

Broader impact. The ideas and techniques in this paper can be potentially used for building machine
systems that can better understand the queries and instructions made by humans. We hope researchers
and developers can build systems for social goods based on our paper. Meanwhile, we are aware of
the ethical issues and concerns that may arise in the actual deployment of such systems, particularly
biases in language and their grounding. The strong interpretability of the syntactic types and semantic
programs learned by our model can be used in efforts to reduce such biases.
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